منتدى أحلى رياضيات منتدى علمي ترفيهي للرياضين والفيزيائيين العرب ستجد فيه ما تريد
 
الرئيسيةالبوابةس .و .جبحـثالأعضاءالمجموعاتالتسجيلدخول

شاطر | 
 

 نظرية الاحتمالات

استعرض الموضوع السابق استعرض الموضوع التالي اذهب الى الأسفل 
كاتب الموضوعرسالة
زهرة الوادي
Admin
avatar

المساهمات : 14
تاريخ التسجيل : 24/08/2008
العمر : 29

مُساهمةموضوع: نظرية الاحتمالات   الثلاثاء أغسطس 26, 2008 9:28 pm

نظرية الاحتمال هي النظرية التي تدرس احتمال الحوادث العشوائية ، فالبنسبة للرياضيين تعتبر الإحتمالات عبارة عن أرقام محصورة في المجال بين 0 و +1 تحدد احتمال حصول أو عدم حصول حدث معين عشوائي أي غير مؤكد . يتم تحديد احتمال الحدث E بالقيمة حسب بدهيات الاحتمال .


مثال لبيان دالة توزيع في حالة متغير منقطعكما ندعو احتمال الحدث E علما بحدوث الحدث F : الاحتمال الشرطي للحدث E مع العلم بحدوث F. نمثل هذا الاحتمال الشرطي بالنسبة بين احتمال التقاطع بين الحدثين ( أي حدوثهما معا ) إلى احتمال حدوث الحدث F ، أي . اذا لم تتغير قيمة الاحتمال الشرطي للحدث E علما بوقوع F عن القيمة الأصلية غير الشرطية للحدث أي أن احتمال واحدا في حال وقوع أو عدم وقوعه عندئذ نقول أن هذين الحدثين مستقلين .

تناقش نظرية الاحتمالات مصطلحين غاية في الهمية : المتغير العشوائي و التوزيع الاحتمالي للمتغير العشوائي .

نظرة أكثر تجريدية
يعتبر الرياضيون عادة نظرية الاحتمالات على أنها دراسة فضاءات الاحتمال و المتliytguyguygkhgjغيرات العشوائية ، على انها طريقة قدمت من قبل كولموغوروف في الثلاثينات من القرن العشرين . يمكنن تمثيل الفضاء الاحتمالي على أنه ثلاثية , حيث

Ω تمثل مجموعة غير خالية, تدعى أحيانا فضاء العينة "sample space",
فضاء العينة يتكون من عناصر هي النتائج الممكنة لهذه التجربة العشوائية التي نقوم بدراسة احتمالاتها . مثلا ، إذا تم اختيار مئة ناخب من مجمل ناخبي بلد ما و سألوا عن خيارهم الانتخابي ، فإن مجموعة إجابات جميع هؤلاء الناخبين ستشكل فضاء العينة في حالة الانتخابات هذه : Ω.

هو جبر-σ لفضاء العينة التي ندعو كل عنصر من عناصرها : حدثا event .
لكي نستطيع ان نقول أن يشكل جبر-سيغما هذا يقتضي بالتعريف انها تحوي Ω, بحيث أن متممة أي حدث تشكل حدثا أيضا ، و اجتماع أي تسلسل أحداث هو حدث أيضا .

P يمثل مقياس احتمالي probability measure على , أي, مقياس بحيث يكون
P(Ω) = 1, أي أن احتمال كامل فضاء العينة يساوي الواحد.

من المهم أن نلاحظ أن P تشكل [دالة] معرفة على و ليس على فضاء العينة Ω.

_________________
حياتك مسألة صعبة جدا فاجتهد لحلها الحل المناسب
الرجوع الى أعلى الصفحة اذهب الى الأسفل
معاينة صفحة البيانات الشخصي للعضو http://beuty-math.ahlamontada.net
 
نظرية الاحتمالات
استعرض الموضوع السابق استعرض الموضوع التالي الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
أحلى رياضيات :: أخبار العلوم والبرامج الرياضية :: احتمالات واحصاء-
انتقل الى: